Ciudad de México, México.– La UNAM, a través del Observatorio Astronómico Nacional (OAN) a cargo del Instituto de Astronomía (IA), participó en el seguimiento de la fusión de una estrella de neutrones con un agujero negro observada por los detectores de ondas gravitacionales LIGO y VIRGO, que confirmaron así la existencia de esta clase de fuentes en el Universo.
Lo anterior fue posible mediante el telescopio robótico denominado DDOTI, ubicado en el Observatorio Astronómico Nacional en San Pedro Mártir, Baja California (OAN-SPM), el cual recibe automáticamente alertas para observar la región del cielo donde se registra la emisión de ondas gravitacionales.
La observación y caracterización de esta especie de “olas” que se propagan por el Universo a la velocidad de la luz, es importante porque es una manera complementaria de estudiar el cosmos. Hasta antes de su descubrimiento por medio del experimento estadounidense LIGO hace pocos años, se había observado el Universo esencialmente sólo con ayuda de luz de diferentes “colores” (radio, óptico, infrarrojo, radio, rayos X o rayos gamma).
Hoy, “las ondas gravitacionales brindan información nueva y complementaria que antes no teníamos sobre qué está pasando en el Universo, en particular con eventos violentos como fusiones y explosiones que involucran el movimiento de grandes cantidades de masa a velocidades relativistas”, explicó William Lee Alardín, investigador del Instituto de Astronomía y uno de los líderes del proyecto.
En septiembre de 2015 se realizó la primera detección directa de ondas gravitacionales, perturbaciones del espacio-tiempo predichas por la teoría de la relatividad general de Einstein hace más de 100 años. Este hallazgo histórico, que fue dado a conocer en febrero de 2016, marcó el inicio de una nueva era para la Astronomía.
Lee Alardín recordó que las ondas se producen cuando cantidades importantes de masa, comparables con el tamaño de una estrella, se desplazan o se sacuden a grandes velocidades. Un objeto de masa parecida a la del Sol que se mueve a una velocidad cercana a la de la luz (300 mil kilómetros por segundo), produce perturbaciones que viajan alejándose de la fuente, “como cuando tiramos una piedra en un estanque y se producen ondas o anillos concéntricos que se van propagando, y si hay una hoja flotando se mueve para arriba y para abajo porque pasó la ola”.
En este caso, expuso Rosa Leticia Becerra Godínez, investigadora posdoctoral en el Instituto de Ciencias Nucleares (ICN), y quien lideró la investigación del seguimiento en la UNAM, se trató de la unión de dos objetos de 5.7 y 1.5 masas solares observada por los detectores de ondas gravitacionales LIGO (en EUA) y VIRGO (en Italia) el 15 de enero de 2020.
“Por las características de las ondas gravitacionales, sabemos que si uno tiene menos de tres masas solares se trata de una estrella de neutrones, y como el otro tiene más de cinco veces la masa del Sol nos lleva a concluir que es un agujero negro”. El evento, denominado GW200115, abundó la científica, se ubicó a una distancia de 300 mega parsecs, es decir, aproximadamente mil millones de años luz de distancia de la Tierra.
Al respecto, el coordinador enfatizó que se trata de la observación de un sistema nunca visto. En la fusión de dos agujeros negros, sólo se detectan ondas gravitacionales; en la colisión de dos estrellas de neutrones, además se produce una señal luminosa muy breve llamada un destello de rayos gamma, dado que las estrellas se encuentran a altísimas temperaturas (más de 10 mil millones de grados Kelvin) y asimismo una emisión secundaria sobre un plazo más largo llamada una kilonova (parecida a una supernova, pero mil veces menos brillante).
En esta ocasión, el evento fue producto de un sistema mixto conformado por una estrella de neutrones y un agujero negro, que “pensábamos que existía en el Universo, pero que nadie había visto directamente y eso es muy emocionante”.
En principio, por la presencia de una estrella de neutrones, el fenómeno puede producir destellos de rayos gamma y una kilonova, además de las ondas gravitacionales. Sin embargo, este evento en particular no tuvo una contraparte observable por los telescopios satelitales y terrestres, incluyendo DDOTI, que lo siguieron.
Ello puede deberse a que la estrella fue tragada de un solo “bocado” por el agujero negro, sin ser destrozada antes por las poderosas fuerzas de marea que genera en su vecindad, o a que la emisión fue tan débil que los telescopios no alcanzaron a percibirla. No obstante, aclaró Lee Alardín, se obtiene información relevante sobre el comportamiento de la materia a altas densidades, entre otros aspectos.
El seguimiento del objeto realizado por el grupo de la UNAM fue posible gracias a DDOTI (Deca-Degree Optical Transient Imager), un sistema robótico de seis telescopios que opera a partir de 2017, propuesto por el investigador del IA, Alan Watson Forster, también líder del proyecto instalado en el OAN-SPM.
Cada uno de los telescopios tiene un campo de 3.4 por 3.4 grados, “que es mucho, pero no suficiente porque la incertidumbre en la posición que recibe DDOTI es muy grande, así que montados juntos y apuntados ligeramente distinto cada uno hacia el cielo, tienen un campo seis veces mayor”, de casi 70 grados cuadrados.
Así, el sistema tiene un área de visión muy grande y “observamos toda la región definida por los observatorios de ondas gravitacionales con la esperanza de encontrar algo. Una vez que lo localizamos, usamos otros telescopios más grandes para estudiarlo con mayor detalle”, mencionó Watson Forster.
Becerra Godínez comentó que una ventaja de este sistema sobre otros instrumentos es que podemos mapear áreas de mayor tamaño y tener una estrategia de observación más eficiente. Asimismo, el sitio del OAN-SPM tiene excelentes noches, ya que las condiciones climatológicas y la oscuridad del cielo son de las mejores del mundo para la observación astronómica y propician que nuestras observaciones deriven en resultados interesantes.
Eventualmente, apuntó William Lee, la información que aporten futuras generaciones de detectores de ondas gravitacionales reducirá la región a observar, pero “participar desde ahora permite que dentro de unos meses o años sigamos en la frontera del proyecto de búsqueda de fuentes de las ondas gravitacionales y sus contrapartes en luz”.
Con la información recabada de este evento y con más detecciones de esta clase de objetos se puede entender mejor lo que pasa al fusionarse objetos compactos como estrellas de neutrones y agujeros negros. Ello aporta conocimiento sobre la vida y la muerte de las estrellas, la estructura de la materia y de la historia de creación de los elementos químicos en el Universo y de sus abundancias relativas. ¿Por qué hay más carbono, nitrógeno u oxígeno, que plomo, oro o platino, por ejemplo? Son preguntas fundamentales y las observaciones de esta clase de sistemas nos ayudan a formular respuestas más precisas.
En el equipo de investigación también participan Margarita Pereyra Talamantes, catedrática Conacyt en el IA-Ensenada; el estudiante de doctorado del Posgrado en Astrofísica Kin López Mendoza; Fabio De Colle, investigador del Instituto de Ciencias Nucleares, y Enrique Moreno Méndez, profesor de la Facultad de Ciencias; además, el personal técnico y de apoyo que hace posible la operación y mantenimiento del OAN-SPM, juega un papel clave para que los telescopios robóticos estén en condiciones óptimas para dar seguimiento a las alertas.
El grupo de la UNAM mantiene en este proyecto una estrecha colaboración con personal de la Universidad de Maryland y el Centro de Vuelo Espacial Goddard de la NASA, así como con la Universidad Estatal de Arizona, EU, a través de los investigadores Alexander Kutyrev, Eleonora Troja, Nathaniel Butler y Simone Dichiara, quienes hacen aportaciones significativas para la operación y explotación científica de DDOTI.